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Abstract. The mapping in a nonlinear complementarity problem may be discontinuous. The integral 
global optimization algorithm is proposed to solve a nonlinear complementarity problem with a robust 
piecewise continuous mapping. Numerical examples are given to illustrate the effectiveness of the 
algorithm. 
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I .  I n t r o d u c t i o n  

Historically, the use of optimization methods to solve nonlinear complementarity 
problems has been obstructed by the fact that the solution of global optimization 
problems was required. In general, these global optimization problems involved 
constraint sets which were not convex, and did not always satisfy constraint 
qualifications. Sometimes the defining functions were not differentiable. The 
objective functions for such optimization approaches to complementarity were 
also difficult to handle and were neither concave nor convex. The depth of the 
technical difficulties resulting from all these factors has discouraged the research 
community from this line of thinking. However, recent progress in global 
optimization, now causes a re-examination of the problem. A new method of 
global optimization which is based on integration of functions has been developed 
[6-12]. From this fresh point of view, it is possible to handle the technical 
difficulties mentioned above and to resolve them in a systematic way. In this 
research we will investigate the solution of nonlinear complementarity problems 
via integral global minimization methods. 

Some related work has been recently completed by Mangasarian and Solodov 
[4]. In their paper, the nonlinear complementarity problem is reformulated as an 
unconstrained minimization problem and then solved by local methods. Applying 
these methods from many starting points, they are often able to solve the 
nonlinear complementarity problem. However, with their approach it is quite 
possible that a suitable starting point will not be chosen and hence they will miss 
the solution to the nonlinear complementarity problem. They also assume the 
functions are differentiable in order to apply existing local methods of optimi- 
zation. In the approach followed here, such assumptions are not necessary. 

Let f : R n --~ R n be a given mapping, O an orthant in R n. The complementarity 
problem associated with f is: 
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where 

F i n d x E R n s u c h t h a t x E O ,  f ( x ) ~ O * = O ,  (x , f (x ) )=O,  (1.1) 

(x ,  f ( x )  ) = x l f l ( x )  + ' "  + x n L ( x )  . 

The mapping f is not necessarily assumed to be continuous. For instance, 
Habetler and Kostreva [2] consider problem (1.1) when f is a P-mapping. Recall 
that in [5] a mapping f :  R"---~ R" is said to be a P-mapping on a set S if for all 
x , y ~ S  with x # y ,  there exists an index i=i(x, y) such that (xi-Yi)( f~(x)-  
f (y))  > 0. A P-mapping must be  one-to-one, but need not be continuous. 

Let N = {1, 2, .  , . ,  n} and I k, k = 1, 2 , . . . ,  2" be subsets of N. Let f :  R"---~R" 
be a P-mapping on R". If for each k = 1 , . . . ,  2" the mapping 

~'f/(x), i e I (k) , 
ff, (x) 

)l x~ , i E Nk I  (k) 

is a mapping from R" onto R", then f is called a nondegenerate P-mapping. 
The following theorem represents a quite general result for nonlinear com- 

plementarity problems, since the functions are not required to be differentiable or 
even continuous and the orthant of definition is left general. However, this level 
of generality is nevertheless compatible with an approach through the integral 
global optimization. 

T H E O R E M  1.1. [2]. Let: R"---~R" be a nondegenerate P-mapping. Then for 
each 0 CR", (1.1) has a unique solution. 

The complementarity problem (1.1) can be formulated as the following minimiza- 
tion problem: 

min g(x) (1.2) 
x ~ S  

where 

g(x)=(x , f (x ) )  and S = { x E R " : x E O ,  f ~ O } .  (1.3) 

The problem (1.1) has solutions if and only if the global minimum value of 
(1.2) is equal to 0 and the set of global minimizers is the solution set of (1.1). 

To solve (1:2), a nonsequential unconstrained minimization algorithm for 
finding the set of global minimizers of a constrained problem is proposed as 
follows: 

A L G O R I T H M  
Step 1: Take c o > minxcs g(x) and e > 0 ;  take a 0 > 0 sufficiently large and 

/3 > 1.0; 
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H 0 : = { x : g ( x ) + % p s ( X ,  6 ) ~ c 0 }  ; k : = 0 ;  

Step 2: Calculate the penalized mean value 

ck+ 1 : - / z ( H k )  [g(x) + akps(X, 6)] d/~ ; 
k 

with 

= (x:  g(x) +  ,ps(x, ; 

Step 3: Calculate the penalized variance 

v : tZ(Hk) [g(x) + %ps(X, 6) -- Ck] 2 dtx ; 
k 

if v > �9 then ak+ a = a k ' f l ;  k := k + 1; go to Step 2; otherwise, go to Step 4; 
Step 4: c* ~cg+l ;H*  ~Hk+l ;S to  p. 

Here  �9 > 0 is the accuracy requirement given in advance and ps(X, 6) is a penalty 
function defined by (3.4) and (3.5). 

As was discussed in [6, 7], a problem formulated with a nonrobust  mapping 
may be numerically unapproximatable and unstable. Thus, we restrict ourselves 
to study the problem of a robust piecewise continuous mapping f. In the next 
section, we will review a few basic concepts of robust sets, mappings and the 
integral approach of minimization which we will use for further consideration. We 
will examine robust piecewise continuous mappings in Section 3. In Section 4, we 
will give numerical examples to illustrate the effectiveness of the algorithm. 

2. Integral Global Minimization 

In this section we will summarize several concepts and properties of the integral 
global minimization of robust discontinuous functions, which will be utilized in 
the following sections. For more details, see [8, 9, 12]. 

Let  X be a topological space, a set D in X is said to be robust if 

cl D = cl int D ,  (2.1) 

where cl D denotes the closure of D and int D the interior of D. 
A robust set consists of robust points of the set. A point x E D is said to be a 

robust point of D, if for each neighbourhood N(x) of x, N(x) fq int D r 0. A set D 
is robust if and only if each point of D is a robust point of D. A point x E D is a 
robust point of D if and only if there exists a net {xx } C int D such that xx ~ x. 

The interior of a nonempty robust set is nonempty. A union of robust sets is 
robust. An intersection of two robust sets may be nonrobust;  but the intersection 
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of an open set and a robust set is robust. A set D is robust if and only if 
OD = a int D, where aD = cl Dkint D denotes the boundary of D. A robust set can 
be represented as a union of an open set and a nowhere dense set. 

A function f : X--~ R" is said to be upper robust if the set 

F c = {x: f(x) < c) (2.2) 

is robust for each real number c. 
An upper semicontinuous function is upper robust since (2.2) is open for each 

c. If X is a complete metric space, then the set of points of discontinuity 
(continuity) of an upper robust function is of first (second) category. 

A function f is upper robust if and only if it is upper robust at each point; f is 
upper  robust at a point x if x EFc  implies x is robust to F c. 

E X A M P L E  2.1. An example of a non upper robust function on R 1 is 

f ( / )  = {01, x = 0 ,  
, x ~ 0 .  

f is nonrobust  at x = 0. 

In [6], robust and approximatable mappings are studied. Let  X and Y be 
topological spaces. A mapping f :  X---~ Y is said to be robust if for each open set 
G C Y, f -X(G)  is a robust set in X. 

The following example shows that a P-mapping may be nonrobust.  

E X A M P L E  2.2. Let  f =  ( f l ,  f2): R 2 ~  R2 be defined as follows: 

and 

fX +1, 
fx(X1,  X2) = / 0 . 1 ,  

LXl - 1 , 

X 1 > 0 and Vx 2 , 

xl = 0 and Vx2, 

x 1 < 0 and Vx 2 

f2(X1,  X2) = X 2 "~ 0 . 5  , VX 1 a n d  X 2 �9 

It is easy to verify that the mapping f is a P-mapping. For  this mapping the 
complementari ty problem (1.1) has a solution x = (0, 0) r and y = (0.1, 0.5) r. 
However ,  f is nonrobust.  Take G = ( -0 .5 ,  0.5) x (0, 1), then f - l ( G )  = {0.1} • 
( - 0 . 5 ,  0.5). f - l (G)  is a nonrobust  set in R 2. 

Suppose C is the set of points of continuity of f. f is said to be approximatable iff 
C is dense in X and for each s C X, there exists a net {x~ } C C such that 

lim x~ = E and lim f(x~) =f(x-) .  ot ~t 
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An approximatable mapping is robust. If X is a Baire space and Y satisfies the 
second axiom of countability, then a mapping is robust if and only if it is 
approximatable. 

In order to investigate a minimization problem with an integral approach, a 
special class of measure spaces, which are called Q-measure spaces, should be 
examined. 

Let X be a topological space, 12 a o--field of subsets of X and/x a measure on 
12. A triple (X, 12,/z) is called a Q-measure space iff 

(i) Each open set in X is measurable; 
(ii) The measure /.~(G) of each nonempty open set G in X is positive: 

/x(G) > 0; 
(iii) The measure/z(K) of a compact set K in X is finite. 
The n-dimensional Lebesgue measure space (R n, 12,/z) is a Q-measure space; a 

nondegenerate Gaussian measure/z on a separable Hilbert space H with Borel 
sets as measurable sets constitutes an infinite dimensional Q-measure space. A 
specific optimization problem is related to a specific Q-measure space which is 
suitable for consideration in this approach. 

Once a measure space is given we can define integration in a conventional way. 
Since the interior of a nonempty open set is nonempty, the Q-measure of  a 

measurable set containing a nonempty robust set is always positive. This is an 
essential property we need in the integral approach of minimization. Hence, the 
following assumptions are usually required: 

ASSUMPTION (A'). f is Q-measurable. 

ASSUMPTION (R). f is upper robust and bounded below on S. 

ASSUMPTION (M). (X, 12, IX) is a Q-measure space. 

In the following application, we need a lemma. 

LEMMA 2.1. Suppose that the conditions (A'), (M) and (R) hold. I f  c>c*  = 
minx~ s f(x), then 

 (ncns)>0. 

Suppose that the assumptions (A'), (M) and (R) hold, and c > c*= infxe s f(x)- 
We define the mean value, variance, modified variance and m-th moment 
(centered at a), respectively, as follows: 

M ( f , c ; S ) - -  ~(Hcn  S) ns f (x )d tx '  

1 fn (f(x) - M(f,  c; S)) 2 d/z V(f, c; S) -  (Hc O S) cns 
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1 fn (f(x) - c) 2 d/x Vx(f, c; S) /x(nc n S) cns 

1 f 
Jn ( f ( x ) -a )md/x ,  m = l , 2 , . .  Mm(f' c; a; S) - /X(Hc A S) cns 

By Lemma 2.1, they are well defined. These definitions can be extended to the 
case c >/c* by a limit process. For instance, 

Mm(f, c; a; S) =lim 1 fn (f(x) - a) m d/x,  m = 1, 2 , . . .  
c zc /x(nc  n S) ckos 

The limits exist and are independent of the choice of (Ck}. The extended concepts 
are well defined and consistent with the above definitions. 

With these concepts we characterize the global optimality as follows: 

T H E O R E M  2.1. Under the assumptions (A'), (M) and (R), the following 
statements are equivalent: 

(i) x * E S  is a global minimizer of f over S and c* =f (x* )  is the global 
minimum value; 

(ii) M(f, c*; S) = c* (the mean value condition); 
(iii) V(f, c*; S) = 0 (the variance condition); 
(iv) Va(f, c*; S) = 0 (the modified variance condition); 
(v) Mm(f, c*; c*; S) = 0, for one of positive integers m = 1, 2 , . . .  (the higher 

moment conditions). 

3. Robust Piecewise Continuous Mappings 

In this section we will examine basic properties of robust pieeewise continuous 
mapping and formulate a nonlinear complementarity problem as an unconstrained 
minimization by using a discontinuous penalty function. 

D E F I N I T I O N  3.1. Suppose S is a robust set of a topological space X. If there is 
a family of robust sets {V~}, h ~ A such that 

S =  (..J V~ and V a ~ A ,  V,~F1V~=O, (3.1) 
A ~ A  

then {V~ } is called a robust partition of S. Suppose { U s }, a E A is another robust 
partit ion of S. If for each V x there is U~ such that U s CV~, then {U~}, a C A  is 
called a robust subpartition of {Vx}. 

D E F I N I T I O N  3.2. Let  X and Y be two topological spaces, S a robust set in X. A 
mapping f :  S C X---> Y is said to be robust piecewise continuous iff there exists a 
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robust partition {V~} of S, such that for any h E A, the restriction of f to V A is 
continuous. 

PROPOSITION 3.1. Let X and Y be topological spaces, and f : X---~Y a 
mapping. I f  f is robust piecewise continuous with a robust partition {V~} of  a 
robust set S, then it is robust. 

Proof. Suppose G C Y is an open set, we will prove that f - l ( G )  n S is a robust 
set. Indeed, 

f - ' (G)  n s = f - ' ( G )  n U v, = U ( f - l (G)  n v~). 
h h 

The intersection of the open set f - l ( G )  and the robust set V~ is robust, and the 
union of robust sets is robust. [] 

R E M A R K  3.1. Note that if in the above definition the partition of S is not 
required to be robust, a piecewise continuous mapping may be non robust. 

The class of robust piecewise continuous mappings with the same robust part i t ion 
has some desirable properties. 

PROPOSITION 3.2. Let X be a topological space, Y a linear topological space, 
and f ,  g: X--> Y mappings. I f  f and g are robust piecewise mappings with the same 
robust partition, then for real numbers a and [3, a . f + [3. g is also a robust 
piecewise continuous mapping. 

Proof. Suppose f and g are robust piecewise continuous with a robust partition 
{V~}. For each give robust set VA in the partition, f and g are continuous on it; so 
is the function a �9 f + [3 �9 g. Hence, a �9 f + [3 �9 g is robust piecewise continuous 
with the partition {V~}. 

The following two propositions can be proved similarly. 

PROPOSITION 3.3. Let X be a topological space and f,  g: X--~ R 1 functions. I f  f 
and g are robust piecewise continuous with the same robust partition, then f . g, 
f / g ( g  r 0), max(f ,  g), min(f ,  g) and Ifl are also robust piecewise continuous. 

PROPOSITION 3.4. Let X be a topological space, then f =  (fl  . . . .  , fn) ~ : 
X- -~R n is a robust piecewise continuous mapping if  and only if  each of  the 
component functions f ,  i = 1 . . . .  , n is robust piecewise continuous with the same 
robust partition. 

For the complementarity problem (1.1), the feasible set is 

S = {x E R n :  x E O, f ~  O} .  (3.2) 
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We assume S and S c are robust and X = {S, S c} has a robust subpartition, and 
assume that f is robust piecewise continuous with respect to this robust subparti- 
tion. 

We can use a discontinuous penalty function to formulate the constrained 
minimization problem ( 1 . 2 ) a s  an unconstrained one, where we assume that 
X =  R n and O =  { x = ( x l ,  . . . , x n ) r :  x i > ~ O , i =  l ,  . . . , n } :  

min[(x, f(x) ) + aps(X, 6)] ,  (3.3) 

where ps(X, 6) is defined as follows: 

ps(X, 6 ) = { 06 , x E S , 
+ d ( x ) ,  x E S  c,  (3.4) 

where 6 > 0 is given and 

d(x) = s [[min(xi, 0)[ + [min(f~(x), 0)1]. (3.5) 
i = l  

Note that in the above definition we relax the requirement of continuity from 
the traditional definition [1, 3] as we wish to utilize discontinuous penalty 
functions. 

DEFINITION 3.3. A function p(x) on X is a penalty function for a constraint set 
S if 

( i )  p(x) = 0 if x E S; 

(!i) infxcs~ p(x) > O, where S~ = {u: Ilu - v II t3, v o  s }  and t3 > O. 

R E M A R K  3.2. It is expected that the penalty will be increasing when the 
distance of a point X to the constraint set S is getting larger. We replace the 
traditional property 

p(x)>0, if ug s 

by (ii). 

DEFINITION 3.4. A penalty function p for the constraint set S is exact for a 
minimization problem 

min g(x) (3.6) 
x E S  

if there is a real number a o > 0 such that for each ot >/a  o we have 

min {g(x) + ap(x)} =min g(x) = c* (3.7) 
x ~ X  x E S  
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and 

{x: g(x) + ap(x) = c*} = {x ~ S: g(x) = c*} = H * .  (3.8) 

P R O P O S I T I O N  3.5. Suppose X = R" and f is robust piecewise continuous with a 
robust subpartition of {S, Sc}, then for each a > 0 and 6 > 0 the penalized function 

(x, f(x)) + aps(X, 3) (3.9) 

is a piecewise robust continuous function. 
Proof. Suppose (V~} is the robust partition with which f is robust piecewise 

continuous. Then the component  functions f/, i = 1 , . . . ,  n are robust piecewise 
with it. Thus, 

(x, f(x) ) = xlf1(x) + ' "  + x .L (x )  

is robust piecewise continuous. (The functions Imin(xi, 0)1 and Imin(f//, 0)1, i =  
1 , . . . ,  n are robust piecewise continuous, so is the function 6 + d(x).) Since, {V~} 
is a subpartition of {S, SO}, thus, the penalty function ps(X, 6) is robust piecewise 
continuous with {V~}. As the sum of (x, f (x))  and aps(X, 6), the penalized 
function (3.9) is robust piecewise with {V~}. [] 

When we use the integral approach to deal with minimization problems, a 
Q-measure space is used. Then we require that each set V~ in the robust partition 
is measurable in the given Q-measure space. A robust partition {V~} is called a 
measurable robust partition if each set in the partition is measurable. If {V~} is a 
measurable robust partition, then a robust piecewise continuous function with this 
partition is measurable. 

Observe that the conditions (A'), (M) and (R) hold for problem (3.3). The 
penalty function (3.4) with (3.5) is exact [see, 10, 11]. We can use integral 
minimization algorithms to solve the unconstrained problem (3.3). 

Return to the algorithm in Section 1. Let �9 = 0 in the algorithm. It may stop in 
a finite number of steps or we obtain a decreasing sequence 

C O > C 1 > " " " > C k > C k +  1 > " " " ~ C *  (3.10) 

and a monotone sequence of sets 

H o  D H 1 D  . . . ~D H k D g k  + 1 D ' ' ' .  

The limits of these sequences exist. Let 

(3.11) 

and 

H* =lira H k = 5 Hk. (3.13) 
k--* ~176 k =  1 

c*=~irnc k (3.12) 
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The following theorems can be proved by applying Theorem 2.1 (see [12], 
Theorem 5.3.3). 

T H E O R E M  3.1. Under the assumptions (A'), (M) and (R), the limit c* of  (3.12) 
is the global minimum value and the limit H* of (3.13) is the set of  global 
minimizers of  g over S. 

C O R O L L A R Y  3.1. Under the assumptions of  Theorem 3.1, if f is a nondegener- 
ate P-mapping, then complementarity problem (1.1) is solvable by the integral 
optimization method. 

Note that the errors at each iteration in the algorithm are not accumulated. 
Suppose we calculate c 1 = M(g, Co; S) with an error A1 and obtain d 1 = c~ + A~; 
then calculate c 2' = M(f, d~; S) with an error A2, and obtain d 2 - c  z -  ' + A2, and so 
on. In general, we have 

c'k=M(g, dk_l;S ) and A k = d k - c ~ ,  k = l , 2 , . . .  (3.14) 

and obtain a decreasing sequence {dg}. Let  

d = lim d k . (3.15) 
k---> oo 

T H E O R E M  3.2. Under the assumptions of  Theorem 3.1, d is the global minimum 
value of  g over S if and only if 

lim A k = 0.  (3.16) 
k---> ~ 

The algorithm has been implemented by a properly designed Monte-Carlo 
method.  At  each iteration we need to find: (1) A level set; (2) a mean value and 
(3) a modified variance (multi-dimensional integrations). Monte-Carlo technique 
can handle higher dimensional integration with lower accuracy: 

where N is the number  of sample points and 0 .2 is the variance. 6--~ 0 as 0.--~ 0 by 
the modified variance condition. 

The numerical tests show that the algorithm is competitive with other  algo- 
rithms. 

4. Numerical Examples 

The examples of this section are quite challenging. One example was proposed by 
Habet ler  and Kostreva [2] to illustrate the concept of discontinuous nondegener-  
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ate P-mapping.  A solution was not provided there. Indeed,  the existence of 

mathemat ica l  methods  to handle nonlinear equation systems with discontinuous 

functions was unknown at that time. 
The  second example is even more  elaborate  and complex, involving polynomial  

and tr igonometric functions as well as the greatest  integer function. I t  is solved 
here  as a demonstra t ion of the capabilities of the integral global optimization 

method  on nonlinear complementar i ty  problems with a high level of complexity. 

E X A M P L E  4.1. 

f "V2 (1, - - lX~(Xl~ 

h(Xl'X2)=l--2-\l' ( x2 Xl  ) 1]\xz] 

Let  f(x 1, x2) = ( - 1 ,  - 2 )  t + h(x 1, x2), where 

if x 2 + x 2 < 1 ,  

if x 2 + x 2/> 1. 

For  this example the constraint set is 

S = {x = (x1, x 2 ) t :  x I ~ O, x 2 ~ O; fl(x1, x2)/> O, f2(xl, x2) i> 0}.  

It  has a robust  partition: 

where  

and 

S = S 1 tO S 2 , 

2+x~<1} S 1 : S ('~ {x : (Xl, x2)t: x I 

2 2 ~  . 
S2 = S n {x = (x l ,  x2) ' :  x l  + x2 ~ 1} 

f l  and f2 are relatively robust  piecewise continuous. Then we can use discontinu- 
ous penal ty  function to solve the following minimization problem: 

rain Ix I �9 fl(x~, x2) + x 2 �9 f2(Xx, x2) ] . (4.1) 
xES 

As we have expected (4.1) has a unique minimizer x* -- (1.0, 2.0) r with the global 

min imum value 0. 

E X A M P L E  4.2. Let  

X =  { ( x l , x 2 ) r : x l , x  2 =O.O01"j ,  ] = 0 ,  1 , 2 , . . . ,  10000}, 

gl(x) = [1 + (x 1 - x  2 - -  1)2(59 - 26x I - 3x 2 - 26x 2 + 6XlX 2 + 3x22] 

• [30 + (2xa + 3x2)2(5 - 20x~ + 12x~ z - 30x 2 + 36XlX 2 + 27x2)], 
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and 

g2(x) = 10.0 sin2(Trxl) + (x 1 - 1.0)211.0 + 10.0 sin2(Trx2)] + x 2 

f l (x)  = g x ( X )  - [ g l ( X ) / l O ]  , A(x)  = g 2 ( x )  - [ g 2 ( x ) / 5 ]  , 

where [y] denotes the integer part of y. The mapping f =  (f l ,  f2) T: X-->R2 is 
discontinuous and the admissible set is discrete. Let 

D = {(zl, Zz)T: ([1000" Z,]/IO00, [1000' ZE]/IO00) T E X ) .  

It is easy to verify that D = [0, 10.001) • [0, 10.001) which is robust. 
We define a new mapping F =  (F 1, FE)T:D----~R 2, where 

F~(z) =f/([lO00. z11/1000, [1000. z2]/1000 ) , i = 1, 2 .  

For this example the feasible set is 

S = {z = (z 1,z2) r E D :  z 1 9 0 ,  z 2>10,F,(z) 9 0 ,  F2(z ) ~>0}. 

/71 and F 2 are robust piecewise continuous. Then we can use a discontinuous 
penalty function to solve the following minimization problem: 

min [z , .  F,(z , ,  z2) + z 2 �9 Fz(z 1, z2)]. (4.2) 
z C S  

The constrained minimization problem (4.2) has a solution corresponding to a 
unique minimizer x* = (1.0, 0.0) r ~ X with the global minimum value 0. After 13 
iterations with 670 function evaluations, we obtain 

x, = 1.0, x 2 = 0.0, F, = 0.0,  F 2 = 3.0, v 1 = 0.0,  

where vl is the modified variance. 

5. Conclusions 

In this paper the methodology of integral global optimization is applied to 
nonlinear complementarity problems under the assumption that the mapping is 
robust, piecewise continuous, and a nondegenerate P-mapping. Under such weak 
assumptions, the analysis which arises is the first which can handle these 
problems. Difficult nonlinear complementarity problems arise in a number of 
contexts in economics, engineering and management and also may arise as 
subproblems in system models such as those of constrained parameter estimation 
and optimal control. Therefore, the contribution of this paper has wide ranging 
application and, potentially, it may open new avenues of research uniting the 
subjects of complementarity theory and global optimization. 

The examples presented in this paper are illustrative of several noteworthy 
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ideas. Examples 2.1 and 2.2 show that there are solvable nonlinear complemen- 
tarity problems which are not within the theoretical framework covered here. 
Examples 4.1 and 4.2, however, are covered by this paper. For these examples, 
the new solution methodology works remarkably well, making computation seem 
like an almost routine task. It is our claim that there is no existing methodology 
which can match that performance. 
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